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Two circumstances of major significance are presently impacting on undergraduate 
mathematics courses. These are respectively increased participation resulting in a 
wider spread of abilities among entering students, and the increasing use of 
symbolic algebra software in course delivery. This paper reports on preliminary 
work in projects at two Universities. Responses to sample questions are discussed 
in the context of their purpose which is motivated by the need to address the dual . 
circumstances indicated above. 

Studies addressing concerns about the mathematics knowledge base of entering 
undergraduates have been reported from time to time (Buckland, 1969; Gray, 1975; 
Clement, Lochead, and Soloway, 1980; Galbraith, 1982; Tall and Razali, 1993). Gray, for 
example, wrote of misconceptions, misguided. and underdeveloped methods, and unrefmed 
intuition that appeared to survive assignments, corrections, solutions, tutorials, and 
examinations. A common thread in all studies was the negative influence of fragmented 
learning and the apparent absence of cognitive strategies to co-ordinate and test the 
consistency and validity of accumulating knowledge. 

The entering characteristics of undergraduates have become an even greater matter of 
interest because of contemporary changes in the intake and delivery of tertiary courses. 
Firstly the increased intake into universities means that entering students are being drawn 
from lower performance bands than previously. In Queensland for example selection is based 

. on an overall position rating (OP). Whereas· in the recent past undergraduates at the 
University of Queensland have been drawn from bands OPl to OP9, in 1996 students from 
bands as low as OPIS have been awarded quota places. Hence the disparity in entering 
performance level has been greatly exacerbated with flow on implications for first year 
teaching. 

The second contextual event of significance is the increasing use of symbolic algebra 
software (Derive, Maple, Mathematica) in undergraduate teaching. Fey (1989) captures a 
significant point when he notes that effective use of technology in learning involves more than 
projecting from a pen and paper medium into a computer based context on the basis of our 
intuitions. New elements are introduced into the teaching-learning situation by the use of 

. computer technology and their effects need to be researched, not assumed. 
With respect to the first challenge it becomes necessary to establish entering knowledge 

levels from a wider perspective than formal Year 12 test results. Many students taking 
undergraduate mathematics bring a background that is both diverse in its scope and variable in 
its recency (mature age entry). Hence screening programs need to provide for a much wider 
spread than the lowest common denominator previously associated with formal year 12 
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testing procedures. It is with the purpose· of distinguishing lower levels of intake proficiency 
that we are partly concerned in this paper. (It is also acknowledged that some universities 
have been grappling with this issue for some time.) 

With respect to the second. issue (readiness for technology based instruction) one 
particular attribute stands out as central to learning based around symbolic algebra software. 
This is the capacity to understand, co-ordinate and apply alternative symbolic representations, 
in particular the algebraic and graphical representations of functionality. 

Two recent studies provide evidence supporting the importance of algebraic/graphical 
inter-relations. Tall and Razali (1993) report on the performance of students comprising a 
diagnostic and remedial group of undergraduates at the Universiti Teknologi, Malaysia. 
Among a variety of findings they reported that students generally had difficulty in co­
ordinating graphical and algebraic representations when slight variations were introduced into 
the context. Boers and Jones (1994) describe the voluntary use of graphics calculators in a 
traditional calculus examination. While the calculator was used extensively throughout the 
course teaching, and its use was built in to the instructional materials, analysis of the students' 
solutions indicated that, contrary to expectations, the graphics calculator was under-utilized by 
most students. The capability of the students to deal simultaneously with graphical and 
algebraic information from two independent sources was identified as the main obstacle to 
effective use. The authors make the significant point that the ability to integrate algebraic and 
graphical information will not manifest itself just because a student has the technology. 'It is 
a learnt skill which needs to be consciously nurtured. ' 

Knowledge base of new undergraduates 
To address the problem outlined as the first issue above a multiple choice entry test was 

designed for administration during the first tutorial hour of the subject MPI05 Mathematical 
Methods and Applications at the University of Queensland. This subject draws students from 
at least seven faculties and in 1996 has an enrolment of252. It is therefore a subject for which 
the clientele forms a representative sample of the variety of students undertaking tertiary 
mathematics. 

The test comprised 20 multiple choice questions designed in four clusters viz algebra, 
co-ordinate geometry, indices and logarithms, and simple calculus. In the main the items 
addressed knowledge fromjunior mathematics apart from several simple one-step questions 
devised around calculus operations. The alternatives were chosen so that the distribution of 
responses would provide information as to the extent of popular but incorrect approaches. 

Some examples are provided below together with the percentage of correct responses, 
the most popular incorrect response, and an indication of the flawed approach most likely to 
be responsible for the incorrect response. 
1. (5a3)2 was correctly given as 25a6 by 67% of students. The most popular" incorrect 

response was 25as given by 15% of students. The probable reasoning behind the 
incorrect response involves adding indices. 

2. Solutions to the equation x(x+2)=3 were given correctly by 64% of students. One of 
two equally popular incorrect responses· was x= 1, 3 given by 10% of students. The 
probable reasoning behind this response is that either x=3 or x+2=3. 
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3. The equation to a circle centre (1,2) and radius 3 was correctly given by 43% of 
students. The most popular incorrect response was (x+ Il + (y+2)2 = 9 given by 23% of 
students. The most probable reason behind this response is flawed rote learning. 

4. The form In y = In 4 + In x was correctly equated with y = 4x by 30% of students. The 
most popular incorrect response was y = 4+x given by 25% of students. The most 
probable reason involves cancelling In. . 

5. The derivative of e2x + 1 was correctly obtained by 53% of students. The most popular 
incorrect response was 2xe2x-1 (23%) which represents a grotesque attempt to make use 
of the form nxn-1:a. 

6. The value of 1· x2 dx was given correctly by 50% of students. The most popular 
incorrect respbnse was 3 given by 21 % of students. This result is achieved by 
substitution of the terminals directly into the integrand. 
These illustrations verify that broken knowledge has fundamental roots beyond senior 

school mathematics courses. A question of interest is the extent to which symbolic algebra 
software, by performing many routine tasks, provides remedial instruction to the learner, or 
whether its use produces, for these students, an even wider disparity between their 
mathematical world and the world of professional mathematics. 

Assessing algebra and graphical linkages 
In designing items to probe algebraic and graphical linkages we accept the view that 

knowledge may be usefully classified in terms of concepts and procedures (Anderson, 1990; 
Hiebertand Lefevre, 1986) and that retrieval of knowledge from memory storage may be 
understood similarly. 

Conceptual knowledge is assumed stored as a linked network of individual units, where 
the more elaborate the network the more points of access there are for activation to occur. 
Inadequate conceptual knowledge means that needed information cannot be located (blank 
response) or that some inappropriate version will be activated (1/A written as the inverse of 
matrix A). 

Procedural knowledge involves the execution of a routine (rule) in response to an 
activating condition. 

e.g. Ifaxl = ax2 and a:;z!: 0 (condition) then Xl = X2 (rule) 
Flawed procedural knowledge may be a consequence of either a mis-applied or wrongly 

remembered condition (losing a solution from x(x-l) = x(2x-3) through cancelling x) or an 
. I ( )2 2 2 Incorrect ru e x - a = x - a . 

In performing mathematics students may simply need to complete a mechanical routine. 
At a higher level they may need to interpret information to facilitate a conceptually based 

conclusion. At a higher level again they may need to construct a solution that involves the 
creation of links and integrations between concepts and procedures that must be themselves 
generated by the solution process. 

Consequently we believe that mathematical knowledge can usefully be considered in 
terms of these three conceptions 1. mechanical 2. interpretive 3. constructive. 
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In using this classification resulting test items can play several roles: 

• as a measure of entering mathematical competence. In this role they serve a diagnostic 
purpose in which perfonnance patterns identify areas of strengths and weaknesses on 
entry. 

• as measures (pre and post) to assess the overall impact of a teaching program in 
deepening the understandings and capacities ~f students. on basic concepts and 
procedures that underpin its structure. 

• when designed (as in the present case) to address concepts and procedures that are 
specific targets of computer based learning sequences, to assess the initial state of 
knowledge with respect to these concepts and procedures. 

Sample test items 
Mechanical: the items in this group require the perfonnance of a standard procedure 
that is cued in the wording of the question. 

M. The graph with equationy = 2X2 - bx3 cuts the X-axis at X=4. The value ofb is 
A 4 B 2 COD 112 E none of the se. 

The specific cue to 'find b' is provided. It will be recognised that the items discussed 
previously from the University of Queensland test are mechanical items. 
Interpretive: the items in this group require the retrieval of conceptual knowledge and 

its application to identify a correct alternative. Procedures as such are not involved. 

1. Which of the following could be the equation of the graph shown (Figure I)? 
A. y = (x-2l (I-x) B. y = (2_X)2 (I-x) 
C. y = (X_2)2 (x-I) D. y = (x_I)2 (x-2l 
E. none of these 

Figure 1. Diagram for item I 

y 

__ ~ ____ ~ __ ~~ ____ ~ __ x 
o 

Reasoning such as the following is required. Since a double root occurs at x=2 and a 
single root at x=l the equation is either y = (X_2)2 (I-x) or y = (X_2)2 (x-I) noting the: 
equivalence of A and B. Since for large x the graph behaves like y = x3 (not y = .i) 
alternative C is selected. 

Constructive: the items in this group involve the use of both conceptual and procedural: 
knowledge but in this case necessary procedures must be identified and introduced by th~, 
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student - they are not cued. Responses involve the construction of a solution rather than the 
selection of an alternative. 
C. The equations of two graphs are y = 3/x and y = x2-4x. Obtain a cubic equation where 

solution gives the x-coordinate of the point(s) of intersection of these two graphs. How 
many positive roots does this equation have? 
The solution involves: recalling that the required equation is obtained by equating 3/x 

and x2-4 (concept), simplifying 3/x = x2-4x to provide a cubic equation in some form 
(procedure), sketching a graph such as Figure 2 (procedure), and recognizing that one 
intersection to the right of 0 means one positive root (concept). 

Figure 2. Diagram for item C 

y 

____ ~------------------~------------ X 

More examples of all three item types are provided in Galbraith and Haines (1995). All 
items used content from preparatory secondary mathematics courses. 
PreliminalY Outcomes 

Results from 244 entering mathematics undergraduates at City University, London were 
obtained for six questions of each type on an entry text. It was predicted that student 
performance would follow the pattern score (mechanical) > score (interpretive) > score 
(constructive). The results are summarized in Table 1 below after removing one a-typical 
outlier from each set. 

Table 1. Summary response data (N = 244) 

Mechanical (5 questions) Interpretive (5 questions) Constructive (5 questions) 
Mean score 0.59 0.39 0.28 
Standard deviation 0.15 0.09 0.15 

The table entry 0.59 means that on average 59% of students obtained the correct answer 
to mechanical questions and similarly for the others. Looked at another way we can say that 
overall an entering undergraduate student has a probability of 0.59 of scoring correctly on the 
mechanical questions etc. 

Given that the challenge increases from mechanical through constructive as predicted, 
the greater demands on the capacity to relate graphical and algebraic representations found in 
the interpretive and constructive questions suggest that this type of item development will be 
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useful in identifying knowledge factors important when teaching occurs per medium of 
symbolic algebra software. 

The test items discussed in this paper have been developed during the preliminary 
stages of two projects .. The items from the Queensland test will be recognised as mechanical 
in terms of the defInitions above. Design, refmement, and testing will continue in the course 
of efforts to address the two issues facing undergraduate teaching described in this paper. 

So far the design of mechanical, interpretive, and constructive questions in terms of 
constructs of conceptual and procedural knowledge have proved useful, both for the targeting 
of specifIc attributes involved in the co-ordination of algebraic and graphical representations, 
and by way of explaining the choice of incorrect solutions in terms of inadequate knowledge 
networks, improperly learned connections, or faulty production rules. These themes will be 
elaborated further in the presentation. 

References 
Anderson, J.R. (1990). Cognitive psychology and its implications (3rd ed). New York: 

W.H. Freeman and Company. 
Boers, M.A., & Jones, P.L. (1994). Students' use of graphics calculators under examination 

conditions. International Journal of Mathematics Education in Science and 
Technology, 25(4),491-516. 

Buckland, P.R. (1969). The mathematical background of teachers in training. The 
Mathematical Gazette, 386,357-362. 

Clement, J., Lochead, J., & Soloway, E. (1980). Positive effects of computer programming 
on the students' understanding of variables and equations. Cognitive Development 
Project. Department of Physics and Astronomy, University of Massachusetts. 

Fey, J.T. (1989). Technology and mathematics education: A survey of recent developments 
and important problems. Educational Studies in Mathematics, 20,237-272. 

Galbraith, P.1. (1982). The mathematical vitality of secondary mathematics graduates and 
prospective teachers. Educational Studies in Mathematics, 13,89-112. 

Galbraith, P.L., & Haines, C.R. (1995). Students' mathematical characteristics: Some 
developmental skills for undergraduate programs. Bulletin of the Institute of 
Mathematics and its Applications, 31, 175-178. 

Gray, J.D. (1975). Criticism in the mathematics class. Educational Studies ,in Mathematics, 
6, 77-86. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J. Hiebert (Ed.), Conceptual and Procedural Knowledge: The 
case of mathematics, (pp.I-27). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Tall, D., & Razali, M.R. (1993). Diagnosing students' diffIculties in learning mathematics. 
International Journal for Mathematical Education in Science and Technology, 24(2), 
209-222. 


